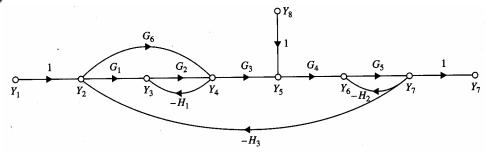
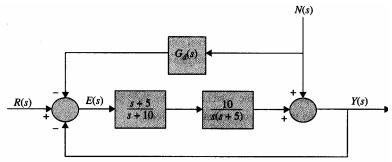
## OKLAHOMA STATE UNIVERSITY

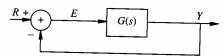
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING




## ECEN/MAE 3723 Systems I Section 001 Fall 2004 Final Exam December 14, 2004

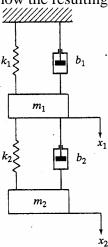



| 1)         | ; 2)     | ; 3) | ; 4) | <b>;</b> |
|------------|----------|------|------|----------|
| Name :     |          |      |      |          |
| Student ID | <b>:</b> |      |      |          |

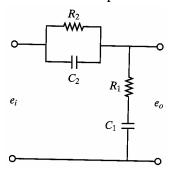

**Problem 1**: Apply the gain formula to the SFG shown below to find the transfer functions of  $\frac{Y_7}{Y_1}$  and  $\frac{Y_7}{Y_4}$ .



**Problem 2**: Figure below shows the block diagram of the antenna control system of the solar-collector field. The signal N(s) denotes the wind dust disturbance acted upon the antenna. The feedforward transfer function  $G_d(s)$  is used to eliminate the effect of N(s) on the output Y(s). Find the transfer function  $Y(s)/N(s)\big|_{R=0}$ . Determine the expression of  $G_d(s)$  so that the effect of N(s) is entirely eliminated.




**Problem 3**: Find the range of K in G(s) for which the G-configuration equivalent system shown below is stable.




in which 
$$G(s) = \frac{9K}{s^3 + 3s^2 + 9s}$$
.

**Problem 4**: Consider the mechanical system shown below. Using the force-current analogy to derive an *analogous* electrical circuit. Show the resulting circuit diagram.



<u>Problem 5</u>: Consider the electrical circuit shown below, obtain the response  $e_o(t)$  when a step input  $e_i(t) = 5 V$  is applied to the system. Assume that  $R_1 = 1M \Omega$ ,  $R_2 = 0.5M \Omega$ ,  $C_1 = 0.5 \mu F$  and  $C_2 = 0.1 \mu F$ . Assume also that capacitors are not charged initially.

